Deep Learning for Biomedical Texture Image Analysis
نویسندگان
چکیده
This paper shows promising results in the application of Convolutional Neural Networks (CNN) to biomedical imaging. Texture is often dominant in biomedical imaging and its analysis is essential to automatically obtain meaningful information. Therefore, we introduce a method using a Texture CNN for the classification of biomedical images. We test our approach on three datasets of liver tissues images and significantly improve the state of the art.
منابع مشابه
Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
The porosity within a reservoir rock is a basic parameter for the reservoir characterization. The present paper introduces two intelligent models for identification of the porosity types using image analysis. For this aim, firstly, thirteen geometrical parameters of pores of each image were extracted using the image analysis techniques. The extracted features and their corresponding pore types ...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملCNN based texture synthesize with Semantic segment
Deep learning algorithm display powerful ability in Computer Vision area, in recent year, the CNN has been applied to solve problems in the subarea of Image-generating, which has been widely applied in areas such as photo editing, image design, computer animation, real-time rendering for large scale of scenes and for visual effects in movies. However in the texture synthesize procedure. The sta...
متن کاملSuggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation
Image segmentation is a fundamental problem in biomedical image analysis. Recent advances in deep learning have achieved promising results on many biomedical image segmentation benchmarks. However, due to large variations in biomedical images (different modalities, image settings, objects, noise, etc), to utilize deep learning on a new application, it usually needs a new set of training data. T...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016